Accuracy Analysis Mechanism for Agriculture Data Using the Ensemble Neural Network Method
نویسندگان
چکیده
With the rise and development of information technology (IT) services, the amount of data generated is rapidly increasing. Data from many different places are inconsistent. Data capture, storage and analysis have major challenges. Most data analysis methods are unable to handle such large amounts of data. Many studies employ neural networks, mostly specifying the number of hidden layers and neurons according to experience or formula. Different sets of network topologies have different results, and the best network model is selected. This investigation proposes a system based on the ensemble neural network (ENN). It creates multiple network models, each with different numbers of hidden layers and neurons. A model that does not achieve the accuracy rate is discarded. The proposed system derives the weighted average of all remaining network models to improve the accuracy of the prediction. This study applies the proposed method to generate agricultural yield predictions. The agricultural production process in Taiwan is more complex than those of manufacturing or other industries. The Council of Agriculture provides agricultural forecasting primarily based on the planted area and experience to predict the yield, but without consideration of the overall planting environment. This work applies the proposed data analysis method to agriculture. The method based on ENN has a much lower error rate than traditional back-propagation neural networks, while multiple regression analysis has an error rate of 12.4%. Experimental results reveal that the ENN method is better than traditional back-propagation neural networks and multiple regression analysis.
منابع مشابه
Classification of Customer’s Credit Risk Using Ensemble learning (Case study: Sepah Bank)
Banks activities are associated with different kinds of risk such as cresit risk. Considering the limited financial resources of banks to provide facilities, assessment of the ability of repayment of bank customers before granting facilities is one of the most important challenges facing the banking system of the country. Accordingly, in this research, we tried to provide a model for determinin...
متن کاملAnomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism
Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...
متن کاملModelling of some soil physical quality indicators using hybrid algorithm principal component analysis - artificial neural network
One of the important issues in the analysis of soils is to evaluate their features. In estimation of the hardly available properties, it seems the using of Data mining is appropriate. Therefore, the modelling of some soil quality indicators, using some of the early features of soil which have been proved by some researchers, have been considered. For this purpose, 140 disturbed and 140 undistur...
متن کاملAn Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization
Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...
متن کاملAn Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization
Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...
متن کامل